Branches of mechanical engineering: Visualizing Dataset To Utilise Car Learning-Exercises



INTRODUCTION
Dear reader,
If you lot are a newbie inward the earth of machine learning, in addition to then this tutorial is precisely what you lot withdraw inward guild to innovate yourself to this exciting novel purpose of the information scientific discipline world.
This postal service includes a total machine learning projection that volition conduct you lot measuring past times measuring to do a “template,” which you lot tin forcefulness out exercise afterward on other datasets.
Before proceeding, delight follow our short tutorial.
Look at the examples given in addition to endeavor to empathize the logic behind them. Then endeavor to solve the exercises below using R in addition to without looking at the answers. Then see solutions to cheque your answers.

Exercise 1
Create a variable “x” in addition to attach to it the input attributes of the “iris” dataset. HINT: Use columns 1 to 4.
Exercise 2
Create a variable “y” in addition to attach to it the output attribute of the “iris” dataset. HINT: Use column 5.
Exercise 3
Create a whisker plot (boxplot) for the variable of the start column of the “iris” dataset. HINT: Use boxplot().
Exercise 4
Now do a whisker plot for each 1 of the 4 input variables of the “iris” dataset inward 1 image. HINT: Use par().


Learn more about machine learning inward the online course Beginner to Advanced Guide on Machine Learning amongst R Tool. In this course of pedagogy you lot volition larn how to:
  • Create a machine learning algorithm from a beginner indicate of view
  • Quickly dive into to a greater extent than advanced methods inward an accessible measuring in addition to amongst to a greater extent than explanations
  • And much more
This course of pedagogy shows a consummate workflow start to finish. It is a nifty introduction in addition to fallback when you lot convey some experience.
Exercise 5
Create a barplot to breakdown your output attribute. HINT: Use plot().
Exercise 6
Create a scatterplot matrix of the “iris” dataset using the “x” in addition to “y” variables. HINT: Use featurePlot().
Exercise 7
Create a scatterplot matrix amongst ellipses around each separated group. HINT: Use plot="ellipse".
Exercise 8
Create box in addition to whisker plots of each input variable again, merely this fourth dimension broken downward into separated plots for each class. HINT: Use plot="box".
Exercise 9
Create a listing named “scales” that includes the “x” in addition to “y” variables in addition to set relation to “free” for both of them. HINT: Use list()
Exercise 10
Create a density plot matrix for each attribute past times flat value. HINT: Use featurePlot().

______________________________________


Below are the solutions to these exercises on visualizing datasets to utilise machine learning.
#################### #                  # #    Exercise 1    # #                  # ####################  install.packages("caret") library(caret) data(iris) validation <- createDataPartition(iris$Species, p=0.80, list=FALSE) validation20 <- iris[-validation,] iris <- iris[validation,]  x <- iris[,1:4]  #################### #                  # #    Exercise two    # #                  # ####################  library(caret) y <- iris[,5]  #################### #                  # #    Exercise iii    # #                  # ####################  library(caret) boxplot(x[,1], main=names(iris)[1])  #################### #                  # #    Exercise 4    # #                  # ####################  library(caret) par(mfrow=c(1,4)) for(i in 1:4) {   boxplot(x[,i], main=names(iris)[i]) }  #################### #                  # #    Exercise five    # #                  # ####################  library(caret) plot(y)  #################### #                  # #    Exercise half dozen    # #                  # ####################  library(caret) featurePlot(x=x, y=y)  #################### #                  # #    Exercise vii    # #                  # ####################  install.packages("ellipse") library(ellipse) library(caret) featurePlot(x=x, y=y,plot="ellipse")  #################### #                  # #    Exercise 8    # #                  # ####################  library(caret) featurePlot(x=x, y=y, plot="box")  #################### #                  # #    Exercise nine    # #                  # ####################  library(caret) scales <- list(x=list(relation="free"), y=list(relation="free"))  #################### #                  # #    Exercise 10   # #                  # ####################  library(caret) scales <- list(x=list(relation="free"), y=list(relation="free")) featurePlot(x=x, y=y, plot="density", scales=scales) 
______________________

http://www.r-exercises.com/2017/09/08/visualizing-dataset-to-apply-machine-learning-exercises-solutions/
http://www.r-exercises.com/2017/09/08/visualizing-dataset-to-apply-machine-learning-exercises/


Sumber http://engdashboard.blogspot.com/

Jangan sampai ketinggalan postingan-postingan terbaik dari Branches of mechanical engineering: Visualizing Dataset To Utilise Car Learning-Exercises. Berlangganan melalui email sekarang juga:

Bali Attractions

BACA JUGA LAINNYA:

Bali Attractions